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Cellulose is a widespread natural substrate utilized
by diverse prokaryotes and fungi; its degradation is cat-
alyzed by a multicomponent enzymatic complex,
which in total is called cellulase. The main cellulase
components are as follows [1]:

(1) endoglucanase (

 

1,4-

 

β

 

-D

 

-glucan-4-glucan hydro-
lase, EC 3.2.1.4), which cleaves 

 

β

 

-1,4

 

 bonds within cel-
lulose macromolecule with the formation of oligosac-
charides of varying length;

(2) cellobiohydrolase, or exoglucanase (

 

1,4-

 

β

 

-

 

D-
glucan cellobiohydrolase, EC 3.2.1.91), which splits
the cellobiose disaccharide from the cellulose chain;

(3) 

 

β

 

-glucosidase (

 

β

 

-

 

D-glucoside glucohydrolase,
EC 3.2.1.21), which hydrolyzes cellobiose with the for-
mation of glucose.

In laboratory cultures, as a rule, microorganisms
produce these enzymes only if cellulose is the only sub-
strate available. The synthesis of the cellulase enzymes
is suppressed both by alternative substrates and by cel-
lobiose, which is the product of cellulose hydrolysis.
Thus, cellobiose is an important regulatory intermedi-
ate. The most pronounced is the inhibitory effect
exerted by cellobiose on cellobiohydrolase. Given that
the growth of all currently known cellulolytic microor-
ganisms on cellulose is not accompanied by cellobiose

accumulation, they should possess enzymes for cellobi-
ose degradation.

In prokaryotes, the biochemical pathways of cellu-
lose hydrolysis have been thoroughly studied in aerobic
and anaerobic neutrophilic bacteria, whereas alkaline
cellulases are more or less studied in aerobic alka-
liphiles only [2]. For the alkaliphilic anaerobic cellu-
lolytic bacterium 

 

Clostridium

 

 

 

alkalicellulosi

 

, the pres-
ence of cellobiohydrolase and cellulosome proteins has
been demonstrated [3]. It is worth noting that this cel-
lulolytic bacterium shows equally good growth on cel-
lulose and cellobiose [4], which suggests an efficient
mechanism of cellobiose hydrolysis and utilization.

In most of the cellulolytic microorganisms studied,
cellobiose is split via the hydrolytic pathway into two
glucose molecules by cellobiase (

 

β

 

-glucosidase) [5].
However, in some bacteria, such as 

 

Cellvibrio

 

 

 

gilvus

 

,

 

Ruminococcus

 

 

 

flavefaciens

 

, 

 

R

 

. 

 

albus

 

, and 

 

Clostridium
thermocellum

 

, cellobiose is converted to glucose-1-
phosphate and glucose by cellobiose phosphorylase;
i.e., phosphorolysis, or phosphorolytic cleavage, occurs
[6–8]. It is commonly accepted that cellulolytic micro-
organisms possessing phosphorylase activity prefer
cellobiose to glucose as the carbon and energy source.

Further degradation of glucose proceeds via the
well-known biochemical pathways: the Embden–Mey-
erhof–Parnas (fructose-bisphosphate) pathway, hex-
ose-monophosphate pathway, or Entner–Doudoroff
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(2-keto-3-deoxy-6-phospho-gluconate) pathway. As far
as alkaliphilic microorganisms are concerned, it was
earlier shown that the alkaliphilic saccharolytic anaero-
bic bacteria 

 

Halonatronum

 

 

 

saccharophilum

 

, 

 

Amphibacil-
lus

 

 

 

fermentum

 

, and 

 

Amphibacillus

 

 

 

tropicus

 

, catabolize
glucose mainly via the fructose-bisphosphate pathway,
although 

 

H. saccharophilum

 

 also employs the hexose-
monophosphate pathway of glucose catabolism, and

 

A. tropicus

 

 employs the Entner–Doudoroff pathway [9].
The hydrolytic alkaliphilic anaerobic bacterium

 

Alkaliflexus imshenetskii

 

, capable of utilizing mono-,
di-, and polysaccharides, was earlier isolated in our lab-
oratory from cyanobacterial mats of the lagoons of the
alkaline lake Verkhnee Beloe (Buryat Republic, Rus-
sian Federation). Among disaccharides, cellobiose is
the best energy substrate for this bacterium. The bacte-
rium grows at a salinity from 0.8 to 53 g/l Na

 

+

 

 (with an
optimum at 20 g/l) and at pH from 7.2 to 10.2 with an
optimum at pH 8.5 [10].

The aim of the present work was to investigate cel-
lobiose catabolism in 

 

Alkaliflexus

 

 

 

imshenetskii

 

.

MATERIALS AND METHODS

 

The microorganism and its cultivation condi-
tions.

 

 This work used the type strain 

 

Alkaliflexus

 

 

 

imsh-
enetskii

 

 Z-

 

7010

 

T

 

 (=

 

DSM

 

 15055

 

T

 

)

 

, obtained from
T.N. Zhilina.

The bacterium was grown under strictly anaerobic
conditions at 

 

37°ë

 

 on a mineral medium of pH 9.3
composed of (g/l): 

 

äç

 

2

 

êé

 

4

 

, 0.2; 

 

MgCl

 

2

 

 

 

·

 

 6ç

 

2

 

é, 0.05;

 

NH

 

4

 

Cl

 

, 0.2; 

 

Na

 

2

 

C

 

é

 

3

 

, 7.4; 

 

NaHC

 

é

 

3

 

, 18.5

 

; yeast extract,
0.2; Lippert trace element solution [11], 1 ml; Wolin
vitamin solution [12], 2 ml; 0.04% resazurin, 2 ml;
Na

 

2

 

S

 

 

 

·

 

 9ç

 

2

 

é, 0.5

 

. Cellobiose (0.3%) was added as the
carbon and energy source.

All components of the medium, except cellobiose,
yeast extract, sodium sulfide, and sodium bicarbonate,
were dissolved in distilled water and boiled to remove
oxygen. The solution was cooled in a flow of nitrogen
gas for 15 min. The cooled medium was supplemented
with yeast extract, sodium sulfide, and sodium bicar-
bonate. The reduced medium was dispensed into Hun-
gate tubes or flasks under a nitrogen gas flow and ster-
ilized for 30 min at 

 

121°ë

 

. Cellobiose was sterilized
separately as a concentrated aqueous solution which
was then introduced into the medium with a syringe.
For inoculation, mid-log-phase cultures were used in a
dose of 1–3% (v/v).

 

Growth determination.

 

 The culture growth was
determined from the increase in the optical density
measured at 600 nm on a KFK-3 spectrophotometer
(Russia) in 1-cm cuvettes. The protein content was
determined by the method of Lowry et al. [13].

 

Analytical methods.

 

 Sugars and their fermentation
products were determined by HPLC on a Staier chro-
matograph (Akvilon, Russia) equipped with an Aminex
HPX-87H column (BioRad, United States) and a

refractometric detector. Elution was performed with
5 mM 

 

H

 

2

 

SO

 

4

 

 at room temperature. Samples of micro-
bial suspension taken at various growth stages were
freed from cells and insoluble medium components by
centrifugation for 3 min at 13500 

 

g

 

. The supernatant
was supplemented with a 0.1 M solution of 

 

CuSé

 

4

 

 in
5 M 

 

H

 

2

 

Sé

 

4

 

 for removal of dissolved sulfide and simul-
taneous acidification of the medium to pH 2. After 1- to
2-h incubation for maturation of the CuS precipitate,
the suspension was centrifuged under the same condi-
tions and the supernatant was introduced into the chro-
matograph.

 

Obtaining of cell-free extracts.

 

 Cells were har-
vested by centrifugation at 

 

9500 

 

g

 

 for 15 min, resus-
pended in a buffer solution (prepared using oxygen-free
water and stored under nitrogen), and disrupted in a
CPX130PB ultrasonic disintegrator (Cole-Parmer,
United States) at 0.4 mA in two 0.5-min sessions. Dis-
rupted cells were centrifuged for 40 min at 

 

4000 

 

g

 

 to
remove cell debris. The supernatant was used to deter-
mine the activity of enzymes.

 

Methods of determination of enzyme activity.

 

Activity of enzymes was determined by monitoring the
oxidation or reduction of NAD(H) or NADP(H) on a
Specord (Germany) spectrophotometer at 340 nm. The
activity of enzymes was expressed in nmol sub-
strate/(min mg protein). In all cases, the volume of the
reaction mixture was 1.05 ml, pH 7.5; the compositions
of the reaction mixtures for particular enzymes were as
follows.

 

β

 

-Glucosidase: 20 mM cellobiose, 3 mM MgS

 

O

 

4

 

 

 

·

 

7ç

 

2

 

é

 

, 1 mM ATP, 1 mM NADP, 5 U/ml hexokinase,
5 U/ml glucose-6-phosphate dehydrogenase, 50 mM
Tris–HCl buffer [8].

Phosphorylase: 20 mM cellobiose, 33 mM Na–K-
phosphate, 3 mM MgS

 

é

 

4

 

 

 

·

 

 7ç

 

2

 

é

 

, 1 mM NADP, 8 U/ml
phosphoglucomutase, 5 U/ml glucose-6-phosphate
dehydrogenase, 50 mM Tris–HCl buffer [8].

Hexokinase: 10 mM D-glucose, 15 mM MgS

 

é

 

4

 

 

 

·

 

7ç

 

2

 

é

 

, 2.5 mM ATP, 0.6 mM NADP, 2 U/ml glucose-6-
phosphate dehydrogenase, 50 mM Tris–HCl buffer [14].

Glucose-phosphate isomerase: 1 mM EDTA, 4 mM
fructose-6-phosphate, 0.6 mM NADP, 1 U/ml glucose-6-
phosphate dehydrogenase, 50 mM Tris–HCl buffer [15].

Glucose-6-phosphate dehydrogenase: 15 mM
MgS

 

é

 

4

 

 

 

·

 

 7

 

H

 

2

 

é

 

, 0.6 mM NADP, 1 mM glucose-6-phos-
phate, 50 mM Tris–HCl buffer.

6-Phosphogluconate dehydrogenase: 15 mM
MgS

 

é

 

4

 

 

 

·

 

 7

 

H

 

2

 

é

 

, 0.6 mM NADP, 1 mM 6-phosphoglu-
conate, 50 mM Tris–HCl buffer.

6-Phosphogluconate dehydratase and 2-keto-3-
deoxy-6-phospho-gluconate aldolase: 15 mM MgS

 

é

 

4

 

 

 

·

 

7H2é, 0.25 mM NADH, 2 mM EDTA, 1 mM 6-phos-
phogluconate, 5 U/ml lactate dehydrogenase, 50 mM
Tris–HCl buffer.

Phosphofructokinase: 0.1 mM EDTA, 1 mM dithio-
threitol, 6 mM Mg(CH3COO)2, 50 mM KCl, 4 mM
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(NH4)2SO4, 0.2 mM NADH, 1 mM fructose-6-phos-
phate, 1 mM ATP, 0.3 mM phosphoenolpyruvate,
2 U/ml pyruvate kinase, 2 U/ml lactate dehydrogenase,
50 mM Tris–HCl buffer [16].

Glyceraldehyde-3-phosphate dehydrogenase: 15 mM
MgSé4 · 7H2é, 5 mM EDTA, 2 mM cysteine, 2.5 mM
ATP, 0.25 mM NADH, 10 mM 3-phosphoglyceric acid,
50 mM Tris–HCl buffer.

Glucose dehydrogenase: 1 mM NADP, 10 mM glu-
cose, 50 mM Tris–HCl buffer [17].

2-Keto-3-deoxy-gluconate kinase: 10 mM MgSé4 ·
7H2é, 2 mM ATP, 0.3 mM NADH, 10 mM gluconate,
7 U/ml lactate dehydrogenase, 50 mM Tris–HCl
buffer [17].

RESULTS AND DISCUSSION

Growth of Alkaliflexus imshenetskii on medium
with cellobiose. The standard medium for cultivation
of this bacterium contained 8 mM cellobiose. Figure 1
shows the curves of biomass accumulation, substrate
consumption, and product formation by the alkaliphile
Alkaliflexus imshenetskii Z-7010 grown on cellobiose.
As seen from the figure, succinate and acetate were the
major fermentation products, and formate was a minor
product. Pyruvate and fumarate (not shown in the fig-
ure) were detected in trace amounts; probably, they
were intermediate products. The succinate/substrate
and succinate/acetate ratios were calculated to be 0.77
and 2.06, respectively, in the exponential phase, and
1.85 and 2.05 in the stationary phase. The specific
growth rate was 0.022 h–1. Thus, two succinate mole-
cules and one acetate molecule were formed from one
cellobiose molecule. The substrate was utilized com-
pletely. In the description of the organism as a new
taxon, propionate is stated to be one of major products
of cellobiose fermentation [10]. We failed to detect pro-

pionate during growth on cellobiose and detected it in
trace amounts during growth on other carbohydrates.
The reasons of this metabolic variability remain
unclear.

Cellobiose fermentation was accompanied by acidi-
fication of the medium, the pH value decreasing from
9.3 to 8.5.

Enzymes involved in cellobiose cleavage by A. im-
shenetskii. To find out which of the two possible path-
ways—the hydrolytic or the phosphorolytic one—is
employed in the metabolism of A. imshenetskii we
determined the activities of β-glucosidase and phos-
phorylase (table). The activity of β-glucosidase was
two orders of magnitude higher than the phosphorylase
activity. Thus, cellobiose utilization by the bacterium
proceeds via both the hydrolytic and phosphorolytic
pathways; however, the contribution of the former path-
way is much greater. Prevalence of the hydrolytic path-
way was also noted in a study of cellobiose cleavage by
the cells of the non-cellulolytic bacterium Prevotella
ruminicola [18]. On the contrary, Ruminococcus albus, a
rumen bacterium possessing cellulolytic activity, uti-
lizes cellobiose primarily via the phosphorolytic path-
way [8]. Most likely, prevalence of a particular pathway
is related to the ability of a microorganism to utilize cel-
lulose as one of its substrates. Cellulolytic microorgan-
isms primarily employ the phosphorolytic pathway for
utilization of the cellobiose obtained as a result of cel-
lulose hydrolysis by exo- and endocellulases. On the
contrary, microorganisms incapable of growth on cellu-
lose primarily employ the hydrolytic pathway of cello-
biose cleavage.

Enzymes of carbohydrate metabolism. In the
trophic system of the anaerobic alkaliphilic commu-
nity, A. imshenetskii is a primary anaerobe which inter-
acts both with bacteria of the first hydrolytic phase
(e.g., Clostridium alkalicellulosi [4]) and with secondary
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Fig. 1. A. imshenetskii Z-7010 growth and product formation on medium with cellobiose: (1) cellobiose; (2) formate; (3) pyruvate;
(4) acetate; (5) OD600; (6) succinate.
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anaerobes, which utilize the metabolic products of
hydrolytic bacteria. Although for cell–cell trophic
interactions only the presence or absence of particular
intermediates in the cell environment is important, it
was expedient to investigate the possible intracellular
pathways of carbohydrate fermentation by A. imsh-
enetskii for fuller characterization of the microorganism
involved in the trophic system.

Therefore, we studied the activity of the key
enzymes of carbohydrate metabolism in A. imshenetskii.
We revealed high activities of hexokinase, glucose-
phosphate isomerase, and phosphofructokinase, which
are the key enzymes of the fructose-bisphosphate path-
way (FBP) (table). We also found activities of glucose-
6-phosphate dehydrogenase, glyceraldehyde-3-phos-
phate dehydrogenase, and key enzymes of the Entner–
Doudoroff pathway—6-phospho-gluconate dehy-
dratase and 2-keto-3-deoxy-6-phospho-gluconate aldo-
lase. The activity of 6-phosphogluconate dehydroge-
nase, which is the key enzyme of the hexose-mono-
phosphate pathway (HMP), was not detected; thus, this
pathway of sugar metabolism cannot be operative in
A. imshenetskii. Neither did we find activities of glu-

cose dehydrogenase and 2-keto-3-deoxy-gluconate
kinase, the key enzymes of the modified Entner–Dou-
doroff pathway. The pathways of cellobiose catabolism
in A. imshenetskii and their interrelations are shown in
Fig. 2.

Earlier, the carbohydrate metabolism of the saccha-
rolytic alkaliphilic anaerobes Halonatronum saccharo-
philum, Amphibacillus fermentum, and A. tropicus was
studied [9]. In the trophic system of the anaerobic alka-
liphilic community, these microorganisms, like A. imsh-
enetskii, are primary anaerobes and utilize certain
mono-, di-, and polysaccharides as the source of carbon
and energy [19, 20]. H. saccharophilum was shown to
ferment glucose via the FBP and HMP pathways
(table). The Entner–Doudoroff pathway is not operative
in this haloanaerobe since its key enzymes are lacking.
A. tropicus metabolizes glucose via the FBP and Ent-
ner–Doudoroff pathway. A. fermentum exhibits activity
of the key enzymes of the three major pathways of glu-
cose metabolism. It is probably due to this fact that
A. fermentum can ferment a wide range of organic sub-
strates [20].

Activity of carbohydrate metabolism enzymes in saccharolytic anaerobes (nmol/(min mg protein))

Microorganism A. imshenetskii H. saccharo-
philum [9]

A. fermen-
tum [9]

A. tropi-
cus [9]

Enzymes involved in cellobiose cleavage

β-glucosidase 3600 ND ND ND

phosphorylase 36 ND ND ND

Enzymes of carbohydrate metabolism FBP HMP KDPG

hexokinase + + + 303.8 354.0 900.0 871.0

glucose-phosphate isomerase + − − 256.0 ND ND ND

phosphofructokinase + − − 201.6 24.0 14.6 10.8

glucose-6-phosphate dehydrogenase − + + 69.5 23.0 31.4 178.5

6-phospho-gluconate dehydrogenase − + − 0 1.6 23.2 0

6-phospho-gluconate dehydratase + 2-keto-3-
deoxy-6-phospho-gluconate aldolase

− − + 6.0 0 55.7 17.0

glyceraldehyde-3-phosphate dehydrogenase + − + 47.0 536.5 221.0 209.0

Note: FBP, fructose-bisphosphate pathway; HMP, the hexose-monophosphate pathway; KDPG, 2-keto-3-deoxy-6-phospho-gluconate
pathway. “ND” stands for “not determined.”
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In A. imshenetskii, like in the above-discussed bac-
teria, activities of enzymes of several glucose catabo-
lism pathways were revealed. In all of the saccharolytic
alkaliphilic anaerobes studied in this respect, the high-
est was the activity of the enzymes of the Embden–
Meyerhof–Parnas pathway (table).
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